Drexel University - Comprehensive, integrated academics enhanced by co-operative education, technology, and research opportunities. | Drexel University
Drexel University
Search events. View events.

All Categories

Click for help in using calendar displays. Print the contents of the current screen.
Display Format: 
Event Details
Notify me if this event changes.Add this event to my personal calendar.
Go Back
Physics Colloquium: "Mechanical Reaction-Diffusion Equations in Biological Systems"
Start Date: 11/14/2013Start Time: 3:30 PM
End Date: 11/14/2013End Time: 4:30 PM

Event Description
Andrea Liu, PhD, Hepburn Professor of Physics, University of Pennsylvania

 

Abstract: How can a wavefront propagate at a constant velocity in a medium that doesn't support waves? In chemical reaction-diffusion systems, travelling wavefronts of the concentration of a reaction product can arise as a nonlinear phenomenon. The signal propagates at constant velocity without decaying because it is amplified as it goes: more product is generated if there is a sufficiently high concentration of the product. I will discuss two very different biological systems--the developing embryo of the fruit fly Drosophila, and the developing heart of chicken embryos--which both exhibit wavefront propagation. In the fruit fly embryo, cell division does not occur everywhere at once across the embryo, but progresses as a wavefront across the embryo. Similarly, in the contracting embryonic heart, the heart cells (cardiomyocytes) do not contract all at once; rather, there is a wavefront of contraction that propagates across the heart. We have proposed that in both of these systems, it is not chemical concentration but rather mechanical stress that propagates as a nonlinear wavefront. Thus, I will argue that these two biological systems are examples of a new class of "mechanical reaction-diffusion" systems that are governed not by chemical reactions, but by stress-triggered generation of additional mechanical stress. 

 

Contact Information:
Name: Frank Ferrone, PhD
Phone: (215) 895-2778
Email: fferrone@physics.drexel.edu
Location:
Disque Hall 919, S. 32nd Street and Chestnut Street, Philadelphia, PA 19104
Audience:
  • Current Students
  • Faculty

  • Display Month:

    Advanced Search (New Search)
    Date Range:
    Time Range:
    Category(s):
    Audience: 

    Special Features: 

    Keyword(s):
    Submit
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search