Drexel University - Comprehensive, integrated academics enhanced by co-operative education, technology, and research opportunities. | Drexel University
Drexel University
Search events. View events.

All Categories

Click for help in using calendar displays. Print the contents of the current screen.
Display Format: 
Event Details
Notify me if this event changes.Add this event to my personal calendar.
Go Back
Mitochondria Malate-Aspartate and Lactate Shuttle Mechanisms Cooperate in Coupling of Glycolysis
Start Date: 11/27/2017Start Time: 10:00 AM
End Date: 11/27/2017End Time: 12:00 PM

Event Description
BIOMED Master's Thesis Defense

Title:
Mitochondria Malate-Aspartate and Lactate Shuttle Mechanisms Cooperate in Coupling of Glycolysis and Oxidative Phosphorylation in Colon Cancer

Speaker:
Oya Altinok, MS Candidate, School of Biomedical Engineering, Science and Health Systems

Advisors:
Zulfiya Orynbayeva, PhD, Assistant Professor, Department of Surgery, College of Medicine, Drexel University

Adrian Shieh, PhD, Associate Teaching Professor, School of Biomedical Engineering, Science and Health Systems, Drexel University

Abstract:
The requirement for metabolic efficiency forces cancer cells to generate sufficient energy equivalents to support their high proliferative activity. One cycle of glycolysis supplies cells with two molecules of ATP only, while oxidative phosphorylation provides around 36 molecules of ATP. Therefore, many cancer types, including colon cancer, reprogram their metabolism to accelerate mitochondria processes to fulfill the elevated energy demands. However, the long known signature of cancer is elevated glycolysis according to the classical work of Otto Warburg, while little is known about the processes underlying this effect. Yet, there is a growing number of studies showing that mitochondria remain highly active across cancers even under glycolytic conditions.

In attempt to understand this discrepancy, this work is aimed in exploring the mechanisms that could couple glycolysis and oxidative phosphorylation to enable aerobic oxidation of glucose by mitochondria. The oxidation of glycolytic lactate in mitochondria with involvement of LDH has been shown in heart, skeletal muscles and neurons, i.e. highly energetic tissues. It would be reasonable to speculate that cancer cells adapt similar mechanisms to support their elevated energetic status.

We studied the activities of mitochondria malate-aspartate shuttle (MAS), consisting of glutamate-aspartate (Aralar/Citrin) and malate-α-ketoglutarate transporters, and lactate dehydrogenase (LDH) which is supposedly localized in mitochondria inter-membrane space. We demonstrated that cooperation of these shuttles is required in generating of respiratory substrate NADH in mitochondria matrix which otherwise is membrane impermeable. It is proposed that MAS supplies NAD+ to mitochondria LDH to convert glycolytic lactate to pyruvate which then enters matrix and gets involved in NADH generation for oxidative phosphorylation.
Contact Information:
Name: Ken Barbee
Phone: 215-895-1335
Email: barbee@drexel.edu
Oya Altinok
Location:
Bossone Research Center, Room 302, located at 32nd and Market Streets.
Audience:
  • Undergraduate Students
  • Graduate Students
  • Faculty
  • Staff

  • Display Month:

    Advanced Search (New Search)
    Date Range:
    Time Range:
    Category(s):
    Audience: 

    Special Features: 

    Keyword(s):
    Submit
    Select item(s) to Search



    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search