Drexel University - Comprehensive, integrated academics enhanced by co-operative education, technology, and research opportunities. | Drexel University
Drexel University
Search events. View events.

All Categories

Click for help in using calendar displays. Print the contents of the current screen.
Display Format: 
Event Details
Notify me if this event changes.Add this event to my personal calendar.
Go Back
PhD Dissertation Defense: Design and Automation of Voltage-Scaled Clock Networks
Start Date: 12/4/2015Start Time: 10:00 AM
End Date: 12/4/2015End Time: 12:00 PM

Event Description
Ph.D. Dissertation Defense of Ahmet Can Sitik on Design and Automation of Voltage-Scaled Clock Networks
 
Advisor
Baris Taskin
 
Abstract
 In this dissertation, a vital step of VLSI physical design flow, synthesis of clock distribution networks, is investigated. Clock network synthesis (CNS) involves large and complex optimization problems to achieve high performance and low power demands of current integrated circuits (ICs). Ineffectiveness of existing methodologies to provide high performance at lower voltage nodes is the main driver for this dissertation research. A design and automation flow for voltage-scaled clock networks is proposed to satisfy tight timing constraints at high frequency (for high performance) and low voltage (for low power) operation.
 
One implementation of voltage-scaled clock networks is low (voltage) swing clocking, which is a known technique, yet its applicability remains limited to designs with low performance demands. In this dissertation, novel methodologies are introduced to i) apply low swing clocking to legacy designs as a power saving methodology, ii) develop a complete CNS flow for low swing clocking of high performance ICs. These methodologies include slew-driven approaches that are better suited to future transistor and interconnect technologies. Second implementation of voltage-scaled clock networks is multi-voltage clocking, which is another known technique, yet its applicability remains limited to clock tree topology. In this dissertation, multi-voltage clocking with a clock mesh topology is investigated in order to address a missing aspect in the current IC design flows.
 
Practical considerations of the current IC design flows are also investigated in this dissertation to expand the applicability of the proposed CNS flow. A novel methodology is introduced to facilitate clock gating within low swing clocking. The applicability of low swing clocking to FinFET technology, which is currently the industry norm, is shown to be effective.
Contact Information:
Name: Electrical and Computer Engineering Department
Phone: (215) 895-2241
Email: ece@drexel.edu
Electrical and Computer Engineering Department
Location:
Curtis 340
Audience:
  • Graduate Students
  • Faculty

  • Display Month:

    Advanced Search (New Search)
    Date Range:
    Time Range:
    Category(s):
    Audience: 

    Special Features: 

    Keyword(s):
    Submit
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search