Events Calendar for Drexel UniversityClick here to Print
Event Details
Notify me if this event changes.Add this event to my personal calendar.
Go Back
Math Seminar: Tensor Decomposition: A Mathematical Tool for Data Analysis and Compression
Start Date: 12/8/2017Start Time: 10:00 AM
End Date: 12/8/2017End Time: 11:00 AM
Event Description
Tamara G. Kolda, Sandia National Labs, Livermore, CA



Abstract: Tensors are multiway arrays, and tensor decompositions are powerful tools for data analysis and compression. In this talk, we demonstrate the wide-ranging utility of both the canonical polyadic (CP) and Tucker tensor decompositions with examples in neuroscience, chemical detection, and combustion science. The CP model is extremely useful for interpretation, as we show with an example in neuroscience. However, it can be difficult to fit to real data for a variety of reasons. We present a novel randomized method for fitting the CP decomposition to dense data that is more scalable and robust than the standard techniques. The Tucker model is useful for compression and can guarantee the accuracy of the approximation. We show that it can be used to compress massive data sets by orders of magnitude; this is done by determining the latent low-dimensional multilinear manifolds. Lastly, we consider the modelling assumptions for fitting tensor decompositions to data and explain alternative strategies for different statistical scenarios.

Contact Information:
Name: Hugo Woerdeman
Korman Center, Room 245, 15 South 33rd Street, Philadelphia, PA 19104
  • Everyone

  • Select item(s) to Search

    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search