Drexel University - Comprehensive, integrated academics enhanced by co-operative education, technology, and research opportunities. | Drexel University
Drexel University
Search events. View events.

All Categories

Click for help in using calendar displays. Print the contents of the current screen.
Display Format: 
Event Details
Notify me if this event changes.Add this event to my personal calendar.
Go Back
Ph.D. Dissertation Defense: Ying Teng
Start Date: 5/28/2014Start Time: 1:00 PM
End Date: 5/28/2014End Time: 3:00 PM

Event Description
Title:  Low Power Resonant Rotary Global Clock Distribution Network Design
Advisor:  Dr. Baris Taskin
Date:  Wednesday, May 28, 2014
Time:  1:00 p.m.
Location:  Room 605, 6th Floor, Bossone Research Enterprise Center

Abstract

Along with the increasing complexity of the modern very large scale integrated (VLSI) circuit design, the power consumption of the clock distribution network in digital integrated circuits is continuously increasing. In terms of power and clock skew, the resonant clock distribution network has been studied as a promising alternative to the conventional clock distribution network. Resonant clock distribution network, which works based on adiabatic switching principles, provides a complete solution for on-chip clock generation and distribution for low-power and low-skew clock network designs in high-performance synchronous VLSI circuits.

This dissertation work aims to develop the global clock distribution network for one kind of resonant clocking technologies: The resonant rotary clocking technology. The following critical aspects are addressed in this work: (1) A novel rotary oscillator array (ROA) topology is proposed to solve the signal rotation direction uniformity problem, in order to support the design of resonant rotary clocking based low-skew clock distribution network; (2) A synchronization scheme is proposed to solve the large scale rotary clocking generation circuit synchronization problem; (3) A low-skew rotary clock distribution network design methodology is proposed with frequency, power and skew optimizations; (4) A resonant rotary clocking based physical design flow is proposed, which can be integrated in the current mainstream IC design flow; (5) A dynamic rotary frequency divider is proposed for dynamic frequency scaling applications. Experimental and theoretical results show: (1) The efficiency of the proposed methodology in the construction of low-skew, low-power resonant rotary clock distribution network. (2) The effectiveness of the dynamic rotary frequency divider in extending the operating frequency range of the low-power resonant rotary based applications.
Location:
Room 605, 6th Floor, Bossone Research Enterprise Center
Audience:
  • Current Students
  • Faculty
  • Staff
  • Graduate Students

  • Display Month:

    Advanced Search (New Search)
    Date Range:
    Time Range:
    Category(s):
    Audience: 

    Special Features: 

    Keyword(s):
    Submit
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search