Drexel University - Comprehensive, integrated academics enhanced by co-operative education, technology, and research opportunities. | Drexel University
Drexel University
Search events. View events.

All Categories

Click for help in using calendar displays. Print the contents of the current screen.
Display Format: 
Event Details
Notify me if this event changes.Add this event to my personal calendar.
Go Back
Regulatory Roles of Fibril-Forming Collagens in Cartilaginous Tissue Biomechanics and Mechanobiology
Start Date: 3/27/2023Start Time: 10:00 AM
End Date: 3/27/2023End Time: 12:00 PM

Event Description
BIOMED PhD Thesis Defense

Title:
Regulatory Roles of Fibril-Forming Collagens in Cartilaginous Tissue Biomechanics and Mechanobiology
 
Speaker:
Chao Wang, PhD Candidate
School of Biomedical Engineering, Science and Health Systems
Drexel University
 
Advisor:
Lin Han, PhD
Associate Professor
School of Biomedical Engineering, Science and Health Systems
Drexel University

Details:
In the knee joint, articular cartilage and meniscus work synergistically to enable our daily activities such as walking, running and jumping. Although the importance of maintaining the health of both tissues cannot be emphasized more and the injury prevalence of both tissues are common, the state of William Hunter in 1743 that “once it destroyed, it never repairs” still holds true after three centuries. This can be attributed to both tissues’ poor capability of intrinsic repair due to their characteristics of non/low vascularity, innervation and very low cellular mitotic activity. Furthermore, despite decades of progresses in tissue engineering, successful regeneration of both tissues remains elusive. This is, at least partly, due to lacking a comprehensive understanding of the molecular activities that govern the assembly of the complex hierarchical matrix architecture, in turn, the reciprocal interactions between the matrix and residing cells.

To address these limitations, a far-reaching knowledge of the roles of fibril-forming collagen, a key component in the extracellular matrix of both articular cartilage and meniscus, could serve as an indispensable foundation to better understand the tissue function. Therefore, first part of this dissertation defense is to elucidate the role of type III collagen in regulating the morphology, nanostructure and biomechanical properties of both articular cartilage and meniscus by studying the phenotypic changes in type III collagen haploinsufficiency mice. Second portion is to elucidate the nanomechanics and micromechanobiological role of the pericellular matrix (PCM), the immediate microniche of residing cells, in fibrocartilage. We queried the roles of proteoglycan and type V collagen in the regulating the structural integrity, matrix assembly and intracellular calcium signaling of murine meniscus. Our findings, for the first time, uncovered the structural and mechanical role of two regulatory collagens, type III and V, in cartilaginous tissues matrices, providing better clinical comprehension to Ehlers-Danlos syndrome (EDS), a rare human genetic disease caused by collagen gene mutations. We also defined the unique molecular and functional properties of the PCM in fibrocartilage, providing a path for enhancing fibrocartilage regeneration by modulating the PCM-mediated cell mechanotransduction.
Contact Information:
Name: Natalia Broz
Email: njb33@drexel.edu
Chao Wang
Location:
Bossone Research Center, Room 709, located at 32nd and Market Streets. Also on Zoom.
Audience:
  • Undergraduate Students
  • Graduate Students
  • Faculty
  • Staff

  • Display Month:

    Advanced Search (New Search)
    Date Range:
    Time Range:
    Category(s):
    Audience: 

    Special Features: 

    Keyword(s):
    Submit
    Select item(s) to Search



    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search