Drexel University - Comprehensive, integrated academics enhanced by co-operative education, technology, and research opportunities. | Drexel University
Drexel University
Search events. View events.

All Categories

Click for help in using calendar displays. Print the contents of the current screen.
Display Format: 
Event Details
Notify me if this event changes.Add this event to my personal calendar.
Go Back
Molecular Mediators of Modality-Dependent Axon Facilitated Axon Regeneration
Start Date: 9/12/2018Start Time: 3:00 PM
End Date: 9/12/2018End Time: 5:00 PM

Event Description
BIOMED PhD Thesis Defense

Title:
Molecular Mediators of Modality-Dependent Axon Facilitated Axon Regeneration Using Novel Tissue Engineered Nerve Grafts

Speaker:
Kritika Katiyar, PhD Candidate, School of Biomedical Engineering, Science and Health Systems, and Doctoral Researcher, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania

Advisors:
D. Kacy Cullen, PhD, Research Associate Professor, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania

Yinghui Zhong, PhD, Associate Professor, School of Biomedical Engineering, Science and Health Systems

Abstract:
Peripheral nerve injury (PNI) is increasingly common with over 200,000 peripheral nerve repairs performed every year in the United States. Common causes of PNI include trauma, tumor excision, and iatrogenic injury. The current gold standard for nerve repair is the autologous nerve graft (autograft) wherein a healthy sensory nerve is taken from another part of the body to repair injured nerve. However, only about 40-50% of patients receiving autograft treatment exhibit functional recovery. This is likely due to the differences in sensory vs motor axon guidance. A major developmental mechanism of axon guidance is axon facilitated axon guidance, where a pioneer axon reaches the end target first, followed by the bolus of growing axons that use the pioneer axon as a guide; this is seen also in vitro when motor neurons and sensory neurons are co-cultured.

Current nerve repair strategies do not take into consideration modality dependent axon regeneration. To address this, we have utilized the technique of axon stretch-growth to develop tissue engineered nerve grafts (TENGs) consisting of long, aligned axon tracts. We have previously reported the efficacy of TENGs in bridging critical nerve gap lengths. These first generation TENGs were comprised of pure sensory stretch grown axons. Here we expand this technology to include motor and mixed motor-sensory stretch grown axons to better suit different nerve types. Motor and mixed motor-sensory TENGs were fabricated by implementing the technique of forced neuronal aggregation and culturing these motor aggregates in custom-built mechanobioreactors. These stretch grown constructs were then used as a testbed to determine key molecular mediators of axon guidance by analyzing expression profiles of specific CAMs in sensory and motor TENGs over time and the effect of stretch growth on CAM expression.

Lastly, sensory, motor, and mixed motor-sensory TENGs were transplanted into a rat sciatic nerve injury model to determine the regenerative efficacy of these modality specific constructs. Electrophysiological and nerve and muscle morphometry assessments confirmed that inclusion of motor axons into the constructs improved functional regeneration outcomes.
Contact Information:
Name: Ken Barbee
Phone: 215-895-1335
Email: barbee@drexel.edu
Kritika Katiyar
Location:
Bossone Research Center, Room 709, located at 32nd and Market Streets.
Audience:
  • Undergraduate Students
  • Graduate Students
  • Faculty
  • Staff

  • Display Month:

    Advanced Search (New Search)
    Date Range:
    Time Range:
    Category(s):
    Audience: 

    Special Features: 

    Keyword(s):
    Submit
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search