Drexel University - Comprehensive, integrated academics enhanced by co-operative education, technology, and research opportunities. | Drexel University
Drexel University
Search events. View events.

All Categories

Click for help in using calendar displays. Print the contents of the current screen.
Display Format: 
Event Details
Notify me if this event changes.Add this event to my personal calendar.
Go Back
PhD Dissertation Defense: Study of Shape Memory Alloy Wires as Actuators
Start Date: 5/31/2016Start Time: 12:00 PM
End Date: 5/31/2016End Time: 2:00 PM

Event Description
A Study of Shape Memory Alloy Wires as Actuators for Textile Robotic and Compression Garment Applications
 
Presenter
Jamie Lyn Kennedy
 
Advisor
Dr. Adam Fontecchio
 
Abstract

In 2008, a Surgeon General's Call to Action was published on how to prevent Deep Vein Thrombosis, DVT, and Pulmonary Embolism, PE. These are two diseases that are the main cause blood clots and hold high death counts. With the only prevention devices being two extremes, a static compression garment and a pneumatic compression boot with a pump. Hospital-level care is not available in a transportable, comfortable and cost-effective system. If a textile soft-robotic device could be introduced to the employment of blood clot prevention a medium ground could be accomplished where a patient can obtain hospital-level quality care anywhere with higher comfort.

Shape memory alloys are a unique material that can transform into a trained or "memorized" shape when a thermal condition is met. This along with many super-elastic material properties, including high power and force to weight ratios, makes them remarkable for actuation in robotics. SMA integration into fabrics brings a new outcome of functioning fabric-structures through thermal control. However, most SMA research is within the linear scope of actuation due to an uncontrollable hysteresis in the material. This work characterizes bending-force outcomes of SMA actuators within woven structures to develop a massaging sleeve or sock to prevent DVT and PE.

Currently, the field of SMA-fabric integration is limited with the research focused on aesthetic and commercial needs. This work will strive to focus on the robotic, medical, and industrial aspects of the integration through the development of a woven SMA-fabric massaging structure. Specific SMA working parameters are experimentally researched and modeled. These parameters include transformation temperature, power consumption, acceleration, torque and angular displacement. These parameters are controlled through material properties, the annealing process and the actuation parameters of the SMA wire segments. The main outcomes of this research are a bending force study of 60 mm SMA wire segments by themselves and within a woven textile. Proof of concepts of the textile robotic and compression garment applications are carried out. This progression will be used towards the development of a fully woven massaging sock or sleeve to prevent blood clots.

Contact Information:
Name: Electrical and Computer Engineering Department
Phone: (215) 895-2241
Email: ece@drexel.edu
Electrical and Computer Engineering Department
Location:
Bossone 302
Audience:
  • Undergraduate Students
  • Graduate Students
  • Faculty

  • Display Month:

    Advanced Search (New Search)
    Date Range:
    Time Range:
    Category(s):
    Audience: 

    Special Features: 

    Keyword(s):
    Submit
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search