Drexel University - Comprehensive, integrated academics enhanced by co-operative education, technology, and research opportunities. | Drexel University
Drexel University
Search events. View events.

All Categories

Click for help in using calendar displays. Print the contents of the current screen.
Display Format: 
Event Details
Notify me if this event changes.Add this event to my personal calendar.
Go Back
Physics Colloquium: Quantum Matter Out of Equilibrium
Start Date: 11/18/2021Start Time: 3:30 PM
End Date: 11/18/2021End Time: 4:30 PM

Event Description
Vedika Khemani
Stanford University
 
A central goal of condensed matter physics is to study the universal emergent properties of macroscopic quantum systems with large numbers of interacting particles. Due to a variety of conceptual and experimentally motivated reasons, the traditional approach of many-body physics is largely built around the study of low-temperature and near-equilibrium properties of time independent Hamiltonians.  

A confluence of developments across a range of subfields --- particularly experimental advances in building programmable quantum devices --- have opened up a vast new territory of studying many-body phenomena in completely novel regimes: highly excited, "post Hamiltonian", and far from equilibrium.  A unifying theme in this enterprise has been the study of many-body quantum dynamics in systems ranging from electrons in solids to cold atomic gases to black holes.  I will describe some highlights of an active research program to advance many-body theory beyond the regime of near-equilibrium time-independent Hamiltonians, with a view towards uncovering novel emergent phenomena in the non-equilibrium dynamics of many-body systems. I will show that not only can non-equilibrium systems exhibit a sharp notion of phase structure, but that some of these phases are completely novel and unique to the out-of-equilibrium setting. For example, certain phases of matter that are forbidden in equilibrium, such as quantum time crystals, have found new life in the out-of-equilibrium setting.  I will describe the theoretical formulation of this phase, some of its many fascinating properties, and its recent experimental realization on Google's quantum processor.
 
Contact Information:
Name: Professor Jorn Venderbos
Phone: 215-895-2714
Email: jwv34@drexel.edu
Location:
Drexel University
Department of Physics
Audience:
  • Undergraduate Students
  • Graduate Students
  • Faculty

  • Display Month:

    Advanced Search (New Search)
    Date Range:
    Time Range:
    Category(s):
    Audience: 

    Special Features: 

    Keyword(s):
    Submit
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search
    Select item(s) to Search